

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Statistics

Telp : +62 274 552243

: stat.fmipa@ugm.ac.id; kaprodi-s1-statistika.mipa@ugm.ac.id

sekprodi-s1-statistika.mipa@ugm.ac.id
Website : http://s1stat.fmipa.ugm.ac.id/

MODULE HANDBOOK

Calculus II							
Bachelor							
MMM-1102							
-							
Calculus II							
2 nd (second)							
2 (Second)							
Chair of the Lab. of Analysis							
-							
Team							
Bahasa Indonesia							
Compulsory course in the first year (2 nd semester) Bachelor Degree							
150 minutes lectures and 180 minutes structured activities per week.							
r a maria di							
Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
week for 14 weeks, 180 minutes structured activities per week, 180 minutes individua							
study per week, in total is 16 weeks per semester, including mid exam and final e							
3							
Students have taken Calculus II course (MMM-1102) and have an examination card							
where the course is stated on.							
Students have taken Calculus I (MMM-1101) and have participated in the final							
Students have taken Calculus I (MMM-1101) and have participated in the final examination of the course.							
After completing this course the students should have :							
1. CO 1. ability to solve indefinite integral problems with suitable methods.							
2. CO 2. ability to determine the integral value of a function on interval [a, b] by							
using the definition of the definite integral.							
3. CO 3. ability to use the Fundamental Theorem of Calculus and Change of							
Variable method in integration.							
4. CO 4. ability to characterize and solve the improper integral.							
5. CO 5. ability to apply the definite integral to determine the area, volume of							
solids of revolution, arc length, area of surface of solids of revolution, center of							
mass, and moment of inertia.							
Indefinite integral: definition, properties, methods.							
The Definite integral: definition, properties, The Fundamental Theorem of							
Calculus, Change of Variable in a Definite Integral, Improper integrals.							
 Applications of Integration: area, volume of solids of revolution, arc length, 							
surface area of a solid of revolution, center of mass, Pappus-Guldin's							
Theorem, moment of inertia.							
The final mark will be weighted as follows:							
No Assessment methods (components, activities) Weight (percentage)							
1 Final Examination 35% – 45%							
2 Mid-Term Examination 30% – 35%							
3 Class Activities: Quiz, Homework, etc. 25% – 30%							
20/0 00/0							
The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,							

Media employed	Board, LCD Projector, Laptop/Computer
Reading List	1. Abe Mizrahi and Michael Sullivan, 1990, <i>Calculus and Analytic Geometry</i> , Wadsworth 2. James Stewart, 1999, <i>Calculus</i> , 4th edition, Brooks/Cole Pub. Comp.
	3. Robert A. Adam and Christopher Essex, 2010, <i>Calculus, A Complete Course</i> , Pearson. 4. Tim Pengajar Kalkulus, <i>Diktat Kuliah Kalkulus II</i> , FMIPA UGM.

PLO AND CO MAPPING

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1									
CO 2									
CO 3									
CO 4									
CO 5									