

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: stat.fmipa@ugm.ac.id Website: http://slstat.fmipa.ugm.ac.id/

Undergraduate Program in Statistics

Telp Email : +62 274 552243

: stat.fmipa@ugm.ac.id; kaprodi-s1-statistika.mipa@ugm.ac.id sekprodi-s1-statistika.mipa@ugm.ac.id

Website : http://s1stat.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Komputasi Statistika II dan Praktikum (Statistical Computation II and Lab session)					
Module level, if applicable	Bachelor					
Code, if applicable	MMS-3442					
Subtitle, if applicable						
Courses, if applicable						
Semester(s) in which the	5/third year					
module is taught	-, ,					
Person responsible for the	Prof. Dr. rernat. Dedi Rosadi, S.Si., M.Sc.					
module	, ,					
Lecture(s)	Prof. Dr. rernat. Dedi Rosadi, S.Si., M.Sc.					
Language	Bahasa Indonesia					
Classification within the	compulsory/elective					
Curriculum	compansory, elective					
Teaching format /class	2 hours lecture and 2 hours laboratory session					
hours per week during the	_ =====================================					
semester:						
Workload	2 hours lecture, 2 hours laboratory session, 8 hours individual study, 14 weeks lectur					
	per semester, 12 weeks laboratory session per semester, and total 156 hours					
	a semester					
Credit points	3					
Requirements	MMS-2422 Komputasi Statistika II (Statistical Computation II)					
Module objectives/intended	After completing this course, the students will be able to:					
learning outcomes	CO1 Have advanced skill to do statistical programming in some fields of application					
	CO2 understand and be able to apply various statistical methods using real data in					
	some fields of application, do necessary computation using statistical software and					
	interpret the output					
Content	This course is continuation of the topics discussed in Statistical computation 1. We					
	introduce some advanced methods in programming using R, and study various					
	application of the statistical computing in some field of studies. Some advanced topic					
	studied including: bootstrap, linear programming, unconstrained optimization,					
	constrained optimization, genetic algorithms, application statistical computing for					
	algebra, introduction to big data analytics, some real projects					
Study and xamination	The weight of assignments will be as follows:					
requirements and forms of	i. Quiz, homework 15%					
examination	ii. Mid semester exam 40%					
	iii. Final exam/Final Project 45%					
	Grade scale:					
	$\begin{array}{ll} A & 85 \leq \text{score} \\ A / B & 75 \leq \\ \end{array}$					
	A/B $75 \le \text{score} < 85$					
	$\begin{array}{ll} B & 65 \le \text{score} < 75 \\ B / C & 55 \le \text{score} < 65 \end{array}$					
	$B/C 55 \le score < 65$					
	$\begin{array}{ccc} C & 45 \leq \text{score} < 55 \\ D & 20 \leq \text{score} \leq 45 \end{array}$					
	$D 20 \le score < 45$					
M 1: 1 1	E score < 20					
Media employed	Slides and LCD projectors, whiteboard					

Reading List	1.	Gentle, J.E., 2002, Elements of Computational Statistics, Springer, New York
	2.	Witten, D., James, G., Tibshirani, R. and Hastie, T., 2013, An Introduction to
		Statistical Learning with Applications in R, Springer, New York

Program Learning Outcomes (PLO)

- PLO-1 have strong basic statistics and mathematics in problem solving analysis.
- PLO-2 have statistical thinking and able to develop.
- PLO-3 have a good ability to utilize technology and statistical software in teaching and research.
- PLO-4 have experience in working on real cases in the field of statistics.
- PLO-5 have a good ability to communicate statistics in writing and oral.
- PLO-6 have ability to further studies, and or lifelong learning.
- PLO-7 have professional ethics and soft skill.

CO and PLO mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
CO 1	X	X	X	X	X		
CO 2			X	X	X	X	X