

## UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <a href="mailto:stat.fmipa@ugm.ac.id">stat.fmipa@ugm.ac.id</a> Website: <a href="http://slstat.fmipa.ugm.ac.id/">http://slstat.fmipa.ugm.ac.id/</a>

Undergraduate Program in Statistics

: +62 274 552243 Telp

: stat.fmipa@ugm.ac.id; kaprodi-s1-statistika.mipa@ugm.ac.id sekprodi-s1-statistika.mipa@ugm.ac.id Email

Website : <u>http://s1stat.fmipa.ugm.ac.id/</u>

## **MODULE HANDBOOK**

| Module name                | Pengantar Analisis Runtun Waktu dan Praktikum (Introduction to Time Series<br>Analysis and Lab session) |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Module level if applicable | Bachelor                                                                                                |  |  |  |  |  |  |
| Code, if applicable        | MMS-3429                                                                                                |  |  |  |  |  |  |
| Subtitle if applicable     |                                                                                                         |  |  |  |  |  |  |
| Courses if applicable      |                                                                                                         |  |  |  |  |  |  |
| Semester(s) in which the   | 5/third year                                                                                            |  |  |  |  |  |  |
| module is taught           |                                                                                                         |  |  |  |  |  |  |
| Person responsible for the | Prof. Dr. rernat. Dedi Rosadi, S.Si., M.Sc.                                                             |  |  |  |  |  |  |
| module                     |                                                                                                         |  |  |  |  |  |  |
| Lecture(s)                 | Prof. Dr. remat. Dedi Rosadi, S.Si., M.Sc.                                                              |  |  |  |  |  |  |
| Language                   | Bahasa Indonesia                                                                                        |  |  |  |  |  |  |
| Classification within the  | compulsory/ <del>clective</del>                                                                         |  |  |  |  |  |  |
| Curriculum                 |                                                                                                         |  |  |  |  |  |  |
| Teaching format /class     | 2/1 hours lecture                                                                                       |  |  |  |  |  |  |
| hours per week during the  |                                                                                                         |  |  |  |  |  |  |
| semester:                  |                                                                                                         |  |  |  |  |  |  |
| Workload                   | 2 hours lecture, 2 hours laboratory session, 8 hours individual study, 14 weeks lecture                 |  |  |  |  |  |  |
|                            | per semester, 12 weeks laboratory session per semester, and total 156 hours                             |  |  |  |  |  |  |
|                            | a semester                                                                                              |  |  |  |  |  |  |
| Credit points              | 2/1                                                                                                     |  |  |  |  |  |  |
| Requirements               | MMS-2420 Introduction to Mathematical Statistics I                                                      |  |  |  |  |  |  |
| Module objectives/intended | By the end of this course, the student should be able to                                                |  |  |  |  |  |  |
| learning outcomes          | CO1 Students are understand basic concept for time series analysis                                      |  |  |  |  |  |  |
| 0                          | CO2 Students are able to understand the theoretical properties of some stationary                       |  |  |  |  |  |  |
|                            | univariate models such as ARMA models and non-stationary models, such as                                |  |  |  |  |  |  |
|                            | ARIMA, SARIMA, ARCH/GARCH                                                                               |  |  |  |  |  |  |
|                            | CO3 Students are able to model the data using time series model, with the help of                       |  |  |  |  |  |  |
|                            | statistical software, such as R, Eviews, or others                                                      |  |  |  |  |  |  |
| Content                    | Topics include basic concepts, such as: Stochastic process, the auto covariance and                     |  |  |  |  |  |  |
|                            | the auto correlation function (ACF), the partial ACF (PACF), strictly and wide-sense                    |  |  |  |  |  |  |
|                            | stationary, causality and invertibility; Estimating the mean, ACF and PACF; Some                        |  |  |  |  |  |  |
|                            | stationary models (White noise, Moving Average/MA, Autoregressive/AR, ARMA),                            |  |  |  |  |  |  |
|                            | Estimation and forecasting stationary models, Diagnostic check methods, some non                        |  |  |  |  |  |  |
|                            | stationary model: ARIMA, SARIMA, ARIMAX and ARCH/GARCH, Short                                           |  |  |  |  |  |  |
|                            | overview of the other models                                                                            |  |  |  |  |  |  |
| Study and examination      | The weight of assignments will be as follows:                                                           |  |  |  |  |  |  |
| requirements and forms of  | i Ouiz homework 15%                                                                                     |  |  |  |  |  |  |
| examination                | $10^{10}$ Mid semester exam $40\%$                                                                      |  |  |  |  |  |  |
|                            | iii. Final exam 45%                                                                                     |  |  |  |  |  |  |
|                            | Grade scale:                                                                                            |  |  |  |  |  |  |
|                            | A $85 \leq \text{score}$                                                                                |  |  |  |  |  |  |
|                            | A/B $75 \leq \text{score} < 85$                                                                         |  |  |  |  |  |  |
|                            | B $65 \leq \text{score} < 75$                                                                           |  |  |  |  |  |  |
|                            | B/C $55 \leq \text{score} < 65$                                                                         |  |  |  |  |  |  |
|                            | $C  45 \leq \text{score} < 55$                                                                          |  |  |  |  |  |  |

|                | D $20 \leq \text{score} < 45$                                                                              |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                | E  score < 20                                                                                              |  |  |  |  |  |
| Media employed | Slides and LCD projectors, whiteboard                                                                      |  |  |  |  |  |
|                |                                                                                                            |  |  |  |  |  |
| Reading List   | Abraham, B. and Ledolter, J., Statistical Methods for Forecasting, Wiley, 1983                             |  |  |  |  |  |
|                | Brockwell, P.J. dan Davis, R.A., 1996, Introduction to Time Series and Forecasting Springer Verlag, Berlin |  |  |  |  |  |
|                | Enders, W., 2004, Aplied Econometric Time Series, Wiley                                                    |  |  |  |  |  |
|                | Gourieroux, C., 1997, ARCH Models and Financial Applications, Springer-Verlag.                             |  |  |  |  |  |
|                | Makridrakis, W., 1999, Metode dan Aplikasi Peramalan, Second Edition, Binarupa Aksara.                     |  |  |  |  |  |
|                | Rosadi, D., 2013, Analisa runtun waktu, GAMA PRESS                                                         |  |  |  |  |  |
|                | Quantitative Micro Software, LLC, 2001, Eviews 4 User's Guide, Quantitative Micro Software                 |  |  |  |  |  |
|                | Verbeek, M., 2000, A Guide to Modern Econometrics, John Wiley                                              |  |  |  |  |  |

Program Learning Outcomes (PLO)

- PLO-1 have strong basic statistics and mathematics in problem solving analysis.
- PLO-2 have statistical thinking and able to develop.
- PLO-3 have a good ability to utilize technology and statistical software in teaching and research.
- PLO-4 have experience in working on real cases in the field of statistics.
- PLO-5 have a good ability to communicate statistics in writing and oral.
- PLO-6 have ability to further studies, and or lifelong learning.
- PLO-7 have professional ethics and soft skill.

## CO and PLO mapping

|      | PLO 1 | PLO 2 | PLO 3 | PLO 4 | PLO 5 | PLO 6 | PLO 7 |
|------|-------|-------|-------|-------|-------|-------|-------|
| CO 1 | Х     | Х     |       |       |       | Х     |       |
| CO 2 | Х     | Х     |       | X     |       | Х     |       |
| CO 3 |       |       | x     | x     | x     | х     | х     |