

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: stat.fmipa@ugm.ac.id Website: http://slstat.fmipa.ugm.ac.id/

Undergraduate Program in Statistics

Telp : +62 274 552243

Email : <u>stat.fmipa@ugm.ac.id</u>; <u>kaprodi-s1-statistika.mipa@ugm.ac.id</u> <u>sekprofi_s1-statistika.mipa@ugm.ac.id</u>

Website : <u>http://s1stat.fmipa.ugm.ac.id/</u>

MODULE HANDBOOK

Module name	Pengantar Teori dan Ukuran Probabilitas (Introduction to Measure and Probability					
	Theory)					
Module level, if applicable	Bachelor					
Code, if applicable	MMS-3404					
Subtitle, if applicable						
Courses, if applicable						
Semester(s) in which the	5/ third year					
module is taught						
Person responsible for the	Prof. Subanar, Ph.D.					
module						
Lecture(s)	Prof. Subanar, Ph.D.					
Language	Bahasa Indonesia					
Classification within the	compulsory/ elective					
Curriculum						
Teaching format /class	3 hours lecture					
hours per week during the						
semester:						
Workload	3 hours lectures and 6 hours individual study per week, 14 weeks per semester, total					
	126 hours a semester					
Credit points	3					
Requirements	MMM-1102 Calculus II					
Module objectives/intended	After completing this course the students have ability to :					
learning outcomes	CO 1. Have a good knowledge in fundamental concept in probability concept.					
	CO 2. Relate probability concepts and measure theory.					
	CO 3. Have a good understanding in the concept of random variable and its					
	distribution.					
	CO4. Understand the basic asymtotic concept and its relation among them.					
Content	Algebra of sets, fundamental concept of probability theory, measure and probability,					
	random variable and its distributions, convergence concepts, relation between					
	convergence, central limit theorem and its application.					
Study and xamination	The weight of assignments will be as follows:					
requirements and forms of	i. Quiz, homework 15%					
examination	ii. Mid semester exam 40%					
	iii. Final exam 45%					
	Grade scale:					
	A $85 \leq \text{score}$					
	A/B $75 \leq \text{score} < 85$					
	B $60 \le \text{score} < 75$					
	B/C $50 \le score < 60$					
	C $40 \le \text{score} < 50$					
	D $20 \leq \text{score} < 40$					
	E score < 20					
Media employed	Slides and LCD projectors, whiteboards					
Reading List	1.Hogg,R.V., Kean,J.W,Craig A.T.,2005, An Introduction To Mathematical					
	Statistics, Prentice Hall.					
	2.Rosenthal, J.S., 2006, A First Look at Rigorous Probability Theory, World Scientific.					

Program Learning Outcomes (PLO)

PLO-1 have strong basic statistics and mathematics in problem solving analysis.

PLO-2 have statistical thinking and able to develop.

- PLO-3 have a good ability to utilize technology and statistical software in teaching and research.
- PLO-4 have experience in working on real cases in the field of statistics.
- PLO-5 have a good ability to communicate statistics in writing and oral.
- PLO-6 have ability to further studies, and or lifelong learning.

PLO-7 have professional ethics and soft skill.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
CO 1	Х	х				x	
CO 2	Х	Х		х		х	
CO 3	Х	Х	Х	х		х	
CO 4	Х	Х	Х	Х		Х	

CO and PLO mapping